Table II (pp. 106-269) lists 8 S values of the same four functions, again with second differences in both arguments, for $\beta=3(0.02) 4, x=2.5(0.1) 10$.

Table III (pp. 272-313) lists 8 S values of the products of the same four functions by $A(\beta, x)=(2 x)^{3 / 2-\beta} \Gamma(\beta)$, with second differences in both arguments, for $\beta=3(0.05) 4, x=10(0.1) 15$. In the sub-title on p .271 , for $\rho \operatorname{read} \beta$.

Table IV (pp. 316-318) lists 9S values of $A(\beta, x)$, without differences, for $\beta=$ $3(0.05) 4, x=10(0.1) 15$.

There is also (pp. 320-321) an 8D table of Everett interpolation coefficients, without differences, at interval 0.001 .

Alan Fletcher

1., J. C. P. Miller, "Note on the general solution of the confluent hypergeometric equation," MTAC., v. 11, 1957, pp. 97-99.
2. A. Erdélyi, W. Magnús, F. Oberhettinger \& F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
3. LUCY J. SLATER, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, 1960.

27[I, M].-J. E. Kilpatrick, Shigetoshi Katsura \& Yuji Inoue, Tables of Integrals of Products of Bessel Functions, Rice University, Houston, Texas and Tôhoku University, Sendai, Japan, 1966, ms. of 55 typewritten sheets deposited in the UMT file.

This unpublished report tabulates the integral

$$
A \int_{0}^{\infty} t^{\alpha} J_{3 / 2+n_{1}}(a t) J_{3 / 2+n_{2}}(b t) J_{3 / 2+n_{3}}(c t) f(t) d t
$$

for the following cases: (1) $A=4(2 \pi)^{1 / 2}, \alpha=-5 / 2, f(t)=1, a=b=c=1$ ' and n_{i} are nonnegative integers $\leqq 20$ such that $n_{1}+n_{2}+n_{3}$ is even; (2) $A=2 \pi$, $\alpha=-4, f(t)=J_{3 / 2+n_{4}}(t), a=b=c=1$, and n_{i} are nonnegative integers $\leqq 10$ such that $n_{1}+n_{2}+n_{3}+n_{4}$ is even; (3) same as the case (1) except that a, b, and c equal 1 or 2 , and $n_{i} \leqq 16$.

Although the tabulated data are given to 16 S (in floating-point form), they are generally not that accurate. A short table of the estimated accuracy (6 to 14 S), which depends on the maximum value of the integers n_{i}, is given on p. 3. For some entries the exact value of the integral, as a rational number or as a rational multiple of $\sqrt{ } 2$, is also given (pp. 10, 27, and 55).

The integrals were evaluated by transforming them into Mellin-Barnes integrals and then applying the calculus of residues. As a by-product of these calculations the authors include a 16 S table of $\ln \left[(-1)^{s} /(-s)!\right]$ for $s=-25(1) 0$ and of $\ln \Gamma(s)$ for $s=-24.5(1) 0.5(0.5) 45$. A spot check revealed that several entries are accurate to only 14 S .

Integrals of the type evaluated in this report have also been considered by this reviewer [1].
Y. L. L.

1. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962, pp. 331-332.
$28[K, L]$--L. S. Bark, L. N. Bol'shev, P. I. Kuznetsov \& A. P. Cherenkov, Tablitsy raspredeleniıa Rele $\widehat{a}-$ Rǎ̆sa (Tables of the Rayleigh-Rice Distribution),
